Modeling chemical bonding effects for protein electron crystallography: the transferable fragmental electrostatic potential (TFESP) method.

نویسندگان

  • Shijun Zhong
  • Voichita M Dadarlat
  • Robert M Glaeser
  • Teresa Head-Gordon
  • Kenneth H Downing
چکیده

This paper addresses the problem of determining the electrostatic potential of large proteins by the superposition of potentials calculated for small fragments. The use of different atomic and molecular fragments is considered for reproducing the molecular electrostatic potential of different conformations of N-acetylalanine methylamide (NAAMA) with an acceptable degree of error as measured by conventional R factors used in crystallographic structure refinement. Three different divisions of NAAMA are tested, producing fragments that incorporate increasingly more complete descriptions of molecular bonding with diminishing accuracy in geometric fit to the parent molecule: single atoms in molecules, bonded atoms in molecules and selected functional groups, such as the backbone peptide moiety, or the alpha-carbon, beta-carbon and their associated H atoms. In the resolution range 2.5-25A, the fairly straightforward use of single atoms in molecules reduces the calculated R factors by 5-15% over a free-atom superposition. No significant further improvement was found at the lowest resolutions with a superposition of single bonds in molecules and R factors were found to degrade with larger fragments at higher resolutions because of poor geometry fits to the atoms of the parent molecule. Because the potential distribution even for single atoms depends on the environment, the best accuracy will be obtained by using a library of fragment potentials calculated for each type of atom as a function of important protein conformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The quantum topological electrostatic potential as a probe for functional group transferability.

The electrostatic potential can be used as an appropriate and convenient indicator of how transferable an atom or functional group is between two molecules. Quantum-chemical topology (QCT) is used to define the electron density of a molecular fragment and the electrostatic potential it generates. The potential generated on a grid by the terminal aldehyde group of the biomolecule retinal is comp...

متن کامل

Theoretical investigations on molecular structure, NBO, HOMO-LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: A DFT study

The N-(2-benzoyl-phenyl) oxalyl derivatives are important models for studying of three-centered intramolecular hydrogen bonding in organic molecules. The quantum theoretical calculations for two crystal structures of N-(2-benzoyl-phenyl) oxalyl (compounds I and II) were performed by Density Functional Theory (B3LYP method and 6-311+G* basis set). From the optimized structures, geometric paramet...

متن کامل

Computational Investigation of Structure and Reactivity of Methyl Hydrazinecarbodithioate

In this study, we theoretically investigated Methyl hydrazinecarbodithioate by quantum chemical calculations for geometry optimization, vibration frequencies, and electronic structure parameters. The geometry optimization by DFT, ab initio MP2 method and the frequency calculation by DFT method was performed at the highest available Pople style 6-311G++(3df,3pd) basis set level. The semi-emp...

متن کامل

Transferable atom equivalent multicentered multipole expansion method

The transferability of atomic and functional group properties is an implicit concept in chemistry. The work presented here describes the use of Transferable Atom Equivalents (TAE) to represent molecular electrostatic potential fields through the use of integrated atomic multipole moments that are associated with each TAE atom type used in the reconstruction. TAE molecular surface distributions ...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta crystallographica. Section A, Foundations of crystallography

دوره 58 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2002